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W artykule dokonano krótkiego przeglądu materiałów stosowanych 
na powłoki EBC (environmental barrier coatings) reprezentujących 
kolejny etap zaawansowania warstw żaroodpornych i powłokowych 
barier cieplnych (TBC – thermal barrier coatings). Opisano konstrukcję 
turbiny gazowej i materiały stosowane do produkcji elementów części 
gorącej oraz wymagania w  zakresie powłok ochronnych. Opisane 
zostały również materiały ceramiczne, które mogą być alternatywą dla 
obecnie stosowanych nadstopów niklu używanych do wytwarzania 
łopatek turbin. Przeprowadzono analizę wymagań dotyczących 
powłok EBC, a  następnie scharakteryzowano poszczególne rodzaje 
tych powłok, a także mechanizmy ich degradacji.

Słowa kluczowe: środowiskowe bariery cieplne, EBC, korozja wyso-
kotemperaturowa, utlenianie, łopatki turbin

In this article, the materials used for EBC coatings, representing 
next stage in the development of heat-resistant layers, and thermal 
barrier coatings are reviewed. In the introduction, the design of gas 
turbine is characterized, as well as the materials used for the hot 
part components and the requirements for protective coatings. 
Ceramic materials that can be an alternative to currently used nickel 
superalloys for turbine blades are also described. The requirements for 
EBC coatings were analyzed and then the various types of EBC coatings 
were characterized, as well as their degradation mechanisms.

Keywords: environmental barrier coatings, high temperature 
corrosion, oxidation, turbine blades

1. Materials and coatings currently used for turbine blades

A gas turbine is an internal combustion engine whose function is 
to convert gas energy into mechanical energy, which in turn drives 
a generator that produces electricity. The main parts of a gas tur-
bine are the intake, compressor, combustion chamber, turbine and 
exhaust nozzle [1, 2]. Air from the environment is drawn into the 
compressor, where it passes through alternating rows of steering 
and rotating blades. The pressure and temperature of the air in-
creases, resulting in a decrease in its volume. Compressed air passes  
into the combustion chamber, where fuel-air mixture is ignited. The 
resulting hot exhaust gases are expanded and passed through the 
turbine, which drives the compressor and auxiliary units (altern- 

ator, pumps). Exhaust gases are discharged through an exhaust 
channel. In order to increase the efficiency of gas turbine, it is ne-
cessary to increase temperature in the combustion chamber. This 
would allow the increment of air pressure. As a result, thrust of an 
engine would be greater, which is beneficial to the efficiency of 
whole turbine [3].

The components operating under the most demanding con-
ditions, i.e., extremely high temperature, corrosive environment 
and huge loads, are high-pressure turbine blades. The blades 
are subjected to shear and bending stresses and thermo-mech-
anical loading cycles under oxidizing conditions at high temper-
atures [3]. Therefore, they should have high fatigue strength, res- 
istance to high-temperature oxidation and creep resistance [4]. 
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For several decades, nickel superalloys have been used for the 
production of high-pressure turbine blades due to their high 
strength at operating temperature [5]. The blades are cast as sin-
gle-crystal in the Bridgman process [6, 7]. After casting, special 
cooling holes are made to circulate cooling air drawn from the 
compressor, lowering the temperature of gases coming into con-
tact with blade surface [8]. This surface is protected by TBC (ther-
mal barrier coatings), consisting of two layers [9]. The ceramic layer 
(TC – top coat) is the outer layer of TBC system, whose function 
is to protect against hot gases and erosion, as well as to serve as 
a  thermal insulation [10]. It is manufactured using atmospheric 
plasma spraying (APS) [11] or EB-PVD (electron beam physical va-
pour deposition) methods [12]. 

The interlayer (BC – bond coat) is the inner layer of the TBC sys-
tem, which is designed to provide required oxidation resistance. 
Typically MCrAlY [13] and aluminide bond coats are used [14, 15]. 
During pre-oxidation, a protective oxide (TGO – thermally grown 
oxide) layer is formed on its surface [16]. TGO is tight and adherent 
to the substrate, thus minimizing its oxidation kinetics and ensur-
ing good adhesion of the outer ceramic layer [17]. The substrate, 
often made of single-crystal nickel superalloy, is responsible for 
transferring mechanical loads [2]. Improvements in thermal bar-
rier coatings and cooling mechanisms made it possible to increase 
the inlet temperature of exhaust gases on a high-pressure turbine 
to 1500°C, increasing efficiency and reducing emissions of pollut-
ants into the atmosphere, including carbon dioxide. However, the 
achieved operating temperature of single-crystal nickel superalloy 
blades is approaching the substrate’s melting point, which hastens 
works on new materials and coatings with better heat resistance, 
capable of operating at even higher temperatures [18].

2. Ceramic matrix composites as material for turbine blades

In recent decades, the development of nickel superalloys and 
heat-resistant TBC coatings has led to a significant increase in gas 
turbine operating temperature. However, the continuing trend 
to improve performance and reduce aircraft emissions has led to 
a search for materials that can provide even higher turbine operat-
ing temperatures [5, 19]. The solution seems to be ceramic matrix 
composites (CMC), which offer properties that significantly exceed 
those of conventional superalloys [20, 21]. Many types of CMC are 
available, characterized by a wide range of properties [22]. These 

include C/C [22], C/SiC [17], SiC/SiC [23] and Ox/Ox [24] composites. 
Due to their exceptional high-temperature mechanical properties, 
low weight, thermal shock resistance and very good high-temper-
ature oxidation resistance, SiC/SiC composites are of particular in-
terest to researchers (Fig. 1) [18, 25, 26].

SiC/SiC composites consist of polycrystalline continuous SiC  
fibers of about 10–15 μm in diameter, with a  BN coating, and 
a matrix also made of SiC. The components of SiC/SiC composites 
should have high thermal stability in the operating temperatures, 
creep resistance and exceptional resistance in corrosive environ-
ments [27]. This allows for long-term operation of the compon-
ent at the specified temperature, time and stress state [28]. The 
fibers should be continuous, with a diameter as small as possible, 
strength of about 3000 MPa, a Young’s modulus of about 400 GPa, 
and the ability to maintain these properties at the highest possible 
temperature under high load for a long time [29]. In addition, the 
material should have low porosity and high thermal conductivity, 
while the grain diameter should be about 500 nm [18].

The main disadvantage of SiC/SiC composites, limiting their 
applicability for turbine blades, is their insufficient corrosion resist-
ance in water vapor condition [30–32]. During operation, SiO2 ox-
ide is formed on their surface, which reacts with the product of avi-
ation fuel combustion: water vapor, forming volatile Si(OH)4  [33]. 
In addition, the presence of impurities (sand, volcanic dust, etc.), 
responsible for CMAS (calcium-magnesium-alumino-silicate) cor-
rosion, causes accelerated destruction of SiC/SiC elements, lead-
ing to a rapid degradation of entire composite [34]. The estimated 
rate of this process is 1 μm/h for the usual conditions in an aircraft 
engine gas turbine (exhaust gas temperature 1350°C, gas velo-
city 350 m/s, partial pressure of water vapor 100 mbar) [35].

Without adequate protection, the durability of structural com-
ponents made from these composites is unacceptable (Fig. 2), pre-
cluding their use in hot aircraft engine parts. For the above reasons, 
coatings that can provide adequate SiC/SiC protection against 
water vapor and CMAS corrosion, known as environmental barrier 
coatings (EBCs), have been sought since the 1980s [32, 36–40].

3. Environmental barrier coatings (EBCs)

CMC composites are very susceptible to CMAS corrosion [41] 
and loss of material due to evaporation of formed oxides in a water 
vapor conditions [42, 43], therefore EBC coatings are used to  

Fig. 1. Potential use of CMC composites in an aircraft engine turbine

Source: [22].

Rys. 1. Potencjalne zastosowanie kompozytów CMC w turbinie silnika lotniczego

Źródło: [22].

Fig. 2. Oxidation rate of SiC/SiC composite in an environment containing 
steam (90% H2O) and in dry oxygen (10% O2) 

Source: own elaboration based on [39].

Rys. 2. Szybkość utleniania kompozytu SiC/SiC w środowisku zawierającym 
parę wodną (90% H2O) oraz w suchym tlenie (10% O2)

Źródło: opracowanie własne na podstawie [39].
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protect them [44]. Literature analysis indicates that the material 
used as EBC should meet following requirements:

 – During operation, there are cyclic temperature changes that 
cause expansion and contraction of the material, as well as ther-
mal stresses. To avoid these, EBC components should have simi-
lar thermal expansion coefficient [45, 46].

 – The chemical compound used should not exhibit polymorphic 
transformation at elevated temperatures, as it leads to a change 
in the material volume, being the cause of cracks and porosity in 
coating [45, 47, 48].

 – Silicon should be avoided when designing the chemical com-
position, because it reacts with water vapor during operation, 
resulting in the formation of volatile products Si(OH)4 that cause 
material recession [45, 49, 50]. 

 – Attention should be paid to the stability and chemical compat-
ibility of EBC components at elevated temperatures and long 
operating times, as reactions can occur between them, leading 
to undesirable products [45, 51, 52].

 – The coating material should be resistant to CMAS corrosion 
(a mixture of molten compounds: CaO-MgO-Al2O3-SiO2) [45, 53, 
54].

The EBC coating must exhibit good adhesion to the substrate, so 
a silicon interlayer is used, which provides a strong chemical bond 
and has a  similar linear thermal expansion coefficient of to the  
SiC/SiC composite substrate [40–56].

4. Degradation mechanism of EBC coatings

Environmental barrier coatings are designed to protect com-
ponents made of SiC/SiC composites that operate in aggressive 
corrosive environments containing water vapor at extremely high 
temperatures. When evaluating the durability of these coatings, it 
is necessary to take into account a  number of factors that cause 
their degradation.

The first is oxidation, which, as in the case of TBC coatings, causes 
the formation of a thin TGO layer (in this case composed mainly of 

Fig. 3. Schematic representation of the volatilization of SiO2 from the initial YbDS coating and formation of YbMS: a) initial stage, b) later stages 

Source: [45, p. 1758].

Rys. 3. Schemat przedstawiający wyparowywanie SiO2 z początkowej powłoki YbDS oraz powstawanie YbMS: a) początkowy etap, b) końcowy etap procesu 

Źródło: [45, s. 1758].

Fig. 4. CMAS reaction mechanism with EBC outer coating (a) and CMAS penetration mechanism along EBC grain boundaries with subsequent fracture cracking (b)

Source: [45, p. 1761].

Rys. 4. Mechanizm reakcji CMAS z zewnętrzną powłoką EBC (a) oraz mechanizm penetracji CMAS wzdłuż granic ziarn EBC z następnym pękaniem szczelinowym (b)

Źródło: [45, s. 1761].
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5. Materials for environmental barrier coatings 

5.1. Mullite 
Initial works on coatings for ceramics (SiC and Si3N4) in the late 

1970s and early 1980s were aimed at extending the life of cylindrical 
components in corrosive environments [67, 68]. The similar coeffi-
cient of thermal expansion and chemical compatibility with SiC and 
Si3N4 ceramics made mullite a great candidate as a coating material for 
SiC and Si3N4 [32, 69–71]. Mullite (3Al2O3 · 2SiO2) is a ceramic material 
with a high melting point, low thermal conductivity (~5 · 10−6 1/°C),  
high electrical resistivity and good creep resistance [67, 72].

Initially, mullite coatings were produced by conventional atmo- 
spheric plasma spraying (APS). Lee, Miller, and Jacobson [73] ob-
tained mullite coating by conventional APS process. After 48 h 
oxidation (2-hours cycles) at 1000°C in air, delamination and a high 
proportion of cracks were observed in the coating microstructure. 
This was attributed to the metastable amorphous phase that forms 
during rapid solidification of the mullite on a cold substrate. Sub-
sequent exposure of the mullite coating at ~1000°C causes crys-
tallization of the amorphous phase, and the accompanying shrink-
age leads to cracking and delamination of the coating [67, 74]. The 
modification of conventional APS process improves properties of 
the obtained mullite coatings – there is a significant increase in ad-
hesion and fracture resistance [73]. Coating obtained via modified 
process was subjected to 48 h oxidation (2-hours cycles) at 1000°C 
in air. It was characterized by a small number of cracks and good 
adhesion to the substrate.

Further research [75, 76] allowed the development of mullite 
coatings that showed no damage after 1200 h of cyclic oxidation 
at 1300°C, in an air atmosphere. The paper [77] examined the be-
havior of coatings consisting of mullite and a mixture of silicon and 
mullite during oxidation under the following conditions: 200 h 
at 1300°C and 300 h at 1380°C. TGO layer composed of SiO2 oxide 
with a  thickness of ~25 μm formed at the mullite/SiC interface. 
Discovery of SiC recession under steam limited the use of mullite 
as a coating material for SiC and Si3N4. Low stability of mullite in 
contact with water vapor caused selective evaporation of SiO2 and 
exposure of porous Al2O3 layer [73]. Tests have also been carried 
out [32, 78], in which the use of a coating consisting of mullite and 
ZrO2 was studied. In the work [78], during isothermal annealing in 
a water vapour atmosphere, the formation of SiO2 scale at the SiC/
mullite interface was observed. The failure of the mullite/ZrO2 sys-
tem lay in the CTE mismatch. Despite similar CTE values for SiC and 
mullite, the thermal expansion of ZrO2 is almost twice that of SiC. 
This causes cracks in the coating during cyclic oxidation and even-
tual delamination [32, 71].

5.2. First generation of EBCs
BSAS (1 − xBaO · xSrO · Al2O3 · 2SiO2, 0 ≤ x ≤ 1), has become an-

other candidate for EBC material, due to its similar CTE value (about  
4.5 · 10−6 °C−1), low Young’s modulus (~100  GPa for high-density 
BSAS) and high stability in contact with water vapor [73]. The dis-
advantage of BSAS is the formation of a low-melting (~1300°C) eu-
tectic during reaction with SiO2 as a result of oxidation, which causes  
EBC degradation and premature failure at temperatures above 
~1300°C [74]. The use of a mullite interlayer eliminated the prob-
lem associated with BSAS chemical incompatibility. Since mullite 
is not a highly durable material under steam oxidation conditions, 
interlayers consisting of mullite and 20 wt. % BSAS were developed. 
Subsequent studies [70, 78–80] identified silicon as the most effect-
ive interlayer material due to its high oxidation resistance and thus 
increased durability under cyclic oxidation conditions [67, 70]. By 
the late 1990s, the latest EBC coatings had a three-layer structure: 
a silicon interlayer, a mullite + BSAS type layer, and a BSAS top layer 
[67, 70].

SiO2 oxide) [57]. Once the critical thickness is reached, inner stresses  
cause cracking and separation at the scale/coating interface [55, 
58]. In the case of an ytterbium disilicate (YbDS) coating, oxidation 
results in the evaporation of outer coating material and formation 
of porosity (Fig. 3), which facilitates the diffusion of oxidant ions 
that attack sensitive silicon interlayer (the reaction produces volat- 
ile silicon hydroxide). In addition, during this process, polymorphic  
transformation of disilicates into monosilicates (YbMS) of ytter-
bium occurs. It results in a 26% reduction in volume, which causes 
the appearance of significant tensile stresses due to the different 
CTE (thermal expansion coefficient) value of ytterbium monosilic- 
ate. This results in the formation of transverse cracks that are path-
ways or easy diffusion for oxidant ions and contribute to faster TGO 
growth [25, 45, 59].

Another problem is recession (loss of material due to evapora-
tion), which for the BSAS (barium-strontium-alumino-silicate) coat-
ing, after 1000 h of operation, reduces sample thickness by 70 μm 
(1400°C, v = 24 m/s). This is an unacceptable degradation rate for 
structural components in the hot part of an aircraft engine [55].

An extremely important factor causing the destruction of EBC 
coatings is CMAS corrosion, which is particularly dangerous in the 
liquid phase (Tm = 1200°C, so well below the expected operating 
temperature of EBC coatings of 1500°C and above). So far, two main 
mechanisms responsible for the destruction of EBC coatings due 
to CMAS corrosion have been identified (Fig. 4). First involves the 
reaction of molten CMAS with the outer EBC coating made of rare 
earth monosilicates. EBC is being dissolved with subsequent recrys-
tallization of yttrium monosilicate and apatite Y-Ca-Si, which form 
characteristic needles (Fig. 4a). The second possible mechanism in-
volves the penetration of liquid CMAS along the grain boundaries 
of the disilicates deep into EBC layers, with subsequent “crevice” 
cracking through the slow motion of molten CMAS (Fig. 4b). If 
CMAS reacts with a  EBC coating made of rare earth disilicates, 
rare earth apatites are formed, coating material is lost, cracks and 
pores develop. However, the chemical composition of CMAS var-
ies and it may contain less calcium compounds. Then degradation 
occurs through fracture cracking, which in a short period of time 
leads to the loss of coating cohesion and its separation. Studies 
conducted [60] show that both mono and ytterbium disilicates 
are very sensitive to CMAS corrosion. After 200 h at 1500°C, CMAS 
penetrated the entire thickness of the 4 mm sample. 

Any foreign objects (birds, debris, chipped coating fragments, 
etc.) entering through the turbine inlet can cause damage by im-
pacting internal structural components. This phenomenon is par-
ticularly dangerous for SiC/SiC composites with EBC coatings, as 
any damage to the coating results in an immediate loss of integrity 
and accelerated degradation of the substrate material [45]. In the 
course of research [61], it was found that for a 2D mat of SiC/SiC 
composite coated with plasma-sprayed EBC coating, the coating 
provides protection from impact of chromium steel particle with 
HRC hardness > 60 for velocities not exceeding 160 m/s. 

One of the EBCs disadvantages is decomposition of disilicate 
to monosilicate in water vapor condition, according to reactions 
[62–65]:

           Yb2SiO5(s) + 3H2O(g) → Yb2Si2O7(s) + 2Yb(OH)3(g), (1)
            Yb2Si2O7(s) + 2H2O(g) → Yb2SiO5(s) + Si(OH)4(g). (2)

This degradation process also takes place in very high temper-
ature of about 1350°C [65]. SiC/SiC composites offer the possibil-
ity of increasing the operating temperature of an aircraft engine 
well above 1500°C, which could translate into increased efficiency 
and lower emissions of harmful gases into the atmosphere. How-
ever, they must be adequately protected from aggressive corrosive 
agents that cause their rapid degradation. Therefore, the search is 
underway for modern EBC coatings that meet the requirements 
outlined above [66, 67]. 
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The CMC composite, coated with Si/mullite + 20% BSAS/BSAS 
was cyclically oxidized at 1310°C for 100 h and 1316°C [74] for 
1000 h (1-hours cycles) in a steam atmosphere. For 1310°C neither 
degradation nor oxidation of EBC was observed; for 1316°C no 
formation of SiO2 and no glassy zone between the layers was ob-
served. The pores and “pockets” of glassy phase in the BSAS layer 
formed at 1316°C can lead to peeling and falling off of the coat-
ing, reducing its durability. The addition of interlayer did not com- 
pletely eliminate the problem associated with the formation of 
a glassy phase during the reaction between BSAS and Si. Moreover, 
the problem increased with increasing temperature and with fur-
ther penetration of glassy phase deep into the surface layer. That 
is why for this type of coatings ~1300°C is their upper temperature 
limit [74, 77].

5.3. Second generation of EBCs
In order to achieve 1482°C as the target operating temper-

ature for EBC coatings, the US space agency NASA in 1999 began 
a  search for another candidate EBC material. Rare earth silicates 
were chosen as they possess high stability in water vapor (associ-
ated with low SiO2 activity), high melting point and often similar 
CTE to CMC. Monosilicates (RE2SiO5, RE – rare-earth elements) com-
pared to disilicates (RE2Si2O7) have better stability in water vapor 
and higher melting point (~1950°C for Yb2SiO5 and ~1850°C for 
Yb2Si2O7), while disilicates have closer CTE values to the substrate 
composite material [81]. The average CTE values and melting tem-
peratures of rare earth compounds, SiC, Si and Si4N5 are shown in 
Table 1.

During oxidation in a water vapor atmosphere of an EBC system 
consisting of Si/Yb2Si2O7 it was observed [83], that steam pene-
trates through Yb2Si2O7 into Si, where it reacts with it to form SiO2 
at the Si/Yb2Si2O7 interface. The thickness of formed SiO2 is mainly 
controlled by the oxygen partial pressure and thickness of the yt-
terbium disilicate, and is proportional to the corrosion time [84]. 
A  Si/Yb2Si2O7 bilayer coating applied to a  substrate of sintered 
α-SiC was subjected to cyclic oxidation in steam, where one cycle 
consisted of 60 min at 1316°C and 10 min at 110°C [85]. The thick-
ness of SiO2 scale increased with the number of cycles to 2.5 μm 
for 2000 cycles. Vertical cracks were observed for samples oxidized 
for more than 1000 cycles, where the thickness of the formed scale 
exceeded 1 μm. The SiO2 formed was identified as α-crystobalite. 
It is believed to undergo polymorphic transformation into β-crys-
tobalite at 1316°C, which can lead to high residual stresses during 
repeated oxidation cycles [85, 86].

The second-generation EBC coatings consist of three layers: a sili-
con interlayer, a mullite-based interlayer and an outer layer made 
of rare earth silicates. The function of Si interlayer is to impede the 
oxygen or water vapor transport, that penetrate the outer layers of 

the coating to form SiO2 oxide with the composite substrate. Dur-
ing the reaction, oxidizing molecules are consumed, which, reach-
ing the bonding layer, form a diffusion barrier and retard the trans-
port of oxidizing molecules into the substrate. It is necessary to use 
interlayer for monosilicates, because otherwise formation of SiO2 
scale would happen, followed by premature flaking and falling off 
at the coating/composite substrate interface due to different CTE 
values and low hardness of the scale [81, 87]. The mullite interlayer 
acts as a diffusion barrier to the oxidizing element simultaneously 
preventing unwanted reactions in the solid state. The outer layer 
made of ytterbium monosilicate provides high chemical stability 
and protection against recession phenomena in contact with water 
vapor [87, 88]. Fig. 5 shows a scheme of a second-generation EBC 
coating.

In the paper [89], a SiC/SiC composite, coated with an EBC coat-
ing with the following three-layer structure: Si/mullite + 20% BSAS/
Yb2SiO5, was subjected to cyclic oxidation at 1380°C for 1000 h. 
After oxidation tests the coating exhibited high adhesion and frac-
ture resistance. The formation of a glassy phase was not observed.

In the ref. [87] a  three-layer EBC coating composed of:  
Si/Al6Si2O13/Yb2SiO5, sprayed using the APS method was an-
nealed (1300°C/20 h) in air. Despite optimized coating process, 
vertical cracks appeared in the EBC layers. They were caused by 
presence of defects and pores in the coating and difference in CTE 
values between the layers. This affected subsequent behavior of 
the coating during cyclic oxidation in a steam environment. After 
250 cycles, due to the recession phenomenon, evaporation of part 
of coating material was observed at the edges and in the center of 
the sample. Cracks were easy diffusion paths for the oxidant, which 
reacted with Si. It was found that the difference in CTE values be-
tween the layers was too large to form an effective EBC coating. 

 Despite their inferior stability in water vapor, it 
was decided to focus on disilicates in further stud-
ies due to their similar CTE values. It was noted 
that thermal spraying of yttrium disilicates pro-
duces a coating with low porosity, free of vertical 
cracks [90]. Garcia, Lee, and Sampath [91] studied 
the effect of different SiO2 contents in powder 
mixture used in the atmospheric plasma spraying 
(APS) process to obtain the desired chemical com-
position of EBC coating. The authors also noted 
the effect of phase transformation on the continu-
ity of coating. During thermal spraying by the APS 
method, an amorphous structure of the coating 
is formed as a result of very rapid cooling [92]. Its 
further heat treatment results in the polymorphic 
transformation, leading to an increase of the coat-
ing volume. The SiO2 coating is part of a  system 

Table 1. Average CTE values and melting point of rare earth compounds, SiC, Si and Si3N4

Tabela 1. Średnie wartości CTE i  temperatura topnienia związków pierwiastków ziem 
rzadkich, SiC, Si i Si3N4

Chemical  
compound

Melting  
temperature 

(°C)

CTE,  
average value 

(10−6 °C −1)

Chemical  
compound

Melting  
temperature 

(°C)

CTE,  
average value 

(10−6 °C −1)
Y2SiO5 1980 5–6 BSAS 1300 4–5

Er2SiO5 1980 5–7, 7–8 BSAS 1300 7–8

Yb2SiO5 1950 3.5–4.5, 7–8 mullite 1800 5–6

Lu2Si2O7 – 3.8 α-Al2O3 2072 6.0–8.4

Sc2Si2O7 + Sc2O3 1860 5–6 Si 1400 3.5–4.5

Yb2Si2O7 1850 4–6 SiC 2545 4.5–5.5

Yb2O3 2415 6.8–8.4 Si3N4 1875 3–4

Source: [82, p. 3082].

Źródło: [82, s. 3082].

Fig. 5. Schematic illustration of tri-layer EBC structure, produced using atmo-
spheric pressure plasma spraying (APS) method

Source: [82, p. 3083].

Rys. 5. Schemat powłoki EBC wykonanej z wykorzystaniem technologii natryski-
wania plazmowego przy ciśnieniu atmosferycznym (APS)

Źródło: [82, s. 3083].
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consisting of a  SiC/SiC substrate and a  silicon interlayer, so the 
change in its volume is limited, which promotes the phenomenon 
of “healing” of resulting microcracks [93]. 

Different thermal spraying methods were used for deposition 
of EBC coatings: conventional APS [91, 94, 95], SPS (suspention  
plasma spray) [96], HVOF (high velocity oxy-fuel spraying) [97], 
VLPPS (very-low pressure plasma spraying) [26] and PS-PVD [95, 
98]. High-temperature technologies (APS and SPS) produced coat-
ings with high content of amorphous phase that cracked when 
cooled to room temperature [99]. HVOF-applied coatings were 
characterized by a higher amount of crystalline phase, due to the 
presence of partially molten and unmelted particles and a higher 
level of porosity [94]. Reduced thermal stresses and increased  
porosity are responsible for better strain tolerance, making it pos-
sible to obtain crack-free coatings. By maintaining the substrate 
temperature close to 1000°C before spraying in the VLPPS process 
and using a  plasma jet to reduce the cooling rate after depos-
ition, highly crystalline coatings without visible cracks were pro-
duced [100]. Actually in EBC coatings development the PS-PVD is 
one of the most promising deposition technology [101–104]. In 
further research the possibility of synthesis of new EBC materials 
during reactive PS-PVD process might decrease it’s manufacturing 
cost [105, 106] and extend their applications. 

6. Conclusions

In the case of an aircraft engine, the material and technological 
solutions used to date (monocrystalline nickel superalloys with 
TBC coatings, gas cooling) do not allow hot gas temperatures to 
rise above 1500°C. Further increase is possible only through the 
development of new material technologies. One of the candidates 
are SiC/ SiC composites with very high thermal stability, creep resist-
ance and high oxidation resistance. However, they are susceptible 
to CMAS corrosion and the presence of water vapor in the atmo-
sphere, which causes rapid evaporation of formed SiO2 oxide. For 
this reason, intensive work is underway on EBC coatings, which 
should meet many demanding requirements. Even the fulfillment of 
such demanding conditions does not allow EBC coatings to achieve 
adequate durability, as they undergo several degradation mechan-
isms: CMAS corrosion, oxidation, material recession, impact of for-
eign objects. Over the past five decades, several generations of EBCs 
have been developed, with mullite coatings as a precursor. Discovery 
of the recession phenomenon and their rapid destruction associated 
with it shifted the directions of further research towards BSAS coat-
ings. However, these coatings were also rejected. The reason being 
the formation of a  glassy phase during operation, which signific- 
antly shortens their service life at temperatures above 1300°C. Fur-
ther research led to the development of monosilicates and rare earth 
disilicates, which form the so-called second generation of EBCs con-
sisting of three layers: a silicon interlayer, a mullite-based interlayer 
and an outer coating made of rare earth silicates.
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